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OUTLINE

1) category learning
A) Experiments
B) Theory

2) categorization automaticity

A) Computational neuroscience model
B) Tests of the model




STIMULUS ON A SINGLE
CATEGORY-LEARNING TRIAL
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RULE-BASED CATEGORY LEARNING
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Rule-Based
Category Learning

Categorization rule 1s
easy to describe

Orientation

Bar Width

Effective learning requires:

* no distractions

e active and effortful processing of feedback
But the nature and timing of feedback 1s not critical

(cluster learning 1s possible)
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Information-Integration
Category Learning
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A REAL-LIFE Il TASK?

Does this mammogram
show a tumor?

1.€., 18 1t 1n the category
“tumor” or the category
“nontumor”™?




A REAL-LIFE Il TASK?




Information-
Integration
Category Learning

Categorization rule 1s
difficult to describe

Orientation

Bar Width

Effective learning requires:
» consistent feedback immediately after response
e consistent mapping from category to response location
* no active feedback processing

(no evidence that cluster learning 1s possible)




Categories

Rule Based Information Integration
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Is the information-integration task inherently more difficult?




JHE TWO COGNITIVE DYNAMIC
SYSTEMS OF COVIS

(Ashby, Alfonso-Reese, Turken, & Waldron, Psychological Review, 1998)

* explicit, logical-reasoning system
-- quickly learns explicit rules

* procedural- or habit-learning system
-- slowly learns similarity-based rules

* simultaneously active in all tasks (at least initially)




The Caudate
Nucleus




Jactile Category Learning

Romo, Merchant et al.




Single Cell Responses - Putamen

Low Speed Cell High Speed Cell
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Merchant et al. (1997, J. of Neurophysiology)



THE COVIS EXPLICIT SYSTEM

* logical reasoning system

* uses working memory and executive attention

* prefrontal cortex, anterior cingulate, head of the
caudate nucleus, thalamo-cortical loops, medial
temporal lobe structures

* Working memory & attentional switching
component - FROST (Ashby, Ell, Valentin, & Casale,
2005, J. of Cognitive Neuroscience)




The COVIS Explicit System

—

Orientation

ACC = Anterior Cingulate
PFC = Lateral Prefrontal Cortex

MDN = Medial Dorsal Nucleus of the Thalamus
GP = Globus Pallidus
CD = Head of the Caudate Nucleus
VTA = Ventral Tegmental Area
SN = Substantia Nigra pars compacta
CD HC = Hippocampus

HC g Excitatory projection
@@= [nhibitory projection

VTA/SN Dopamine projection



The COVIS Procedural-Learning System

The Striatal Pattern Classifier (Ashby & Waldron, 1999)

Premotor Visual




A Cortical-Striatal Synapse

Cortical

Dopamine
cell

Medium
spiny cell
(caudate)




FEEDBACK PREDICTION

* Information-integration category learning should
be sensitive to feedback delay

* Rule-based category learning should not be
sensitive to feedback delay




Design of Feedback-Delay Experiment

500 ms
5 sec Delay
-—/ Correct
or 750 ms
750 ms Correct Feedback Error
or
Error —
5 sec
500 ms % et =
Response 7 : 7 Response
Terminated Dlsplay Terminated
Imme diate Delayed
Feedback Feedback

Maddox, Ashby, & Bohil (2003, JEP:LM&C)



Effects of Feedback Delay
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Maddox, Ashby, & Bohil (2003, JEP:LM&C)



FOLLOW-UP EXPERIMENTS

* Results identical with 2.5 and 10 sec delays

* RB results replicated at 4 increased levels of
difficulty

* Replication with a rule-based task that uses
a conjunction rule?




Category Structures
(Note: Rule-based discriminability higher)

Rule-Based Information-Integration
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Maddox & Ing (2005, JEP:LM&C)
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Rule-Based Information-
Integration

Maddox & Ing (2005, JEP:LM&C)



CONCLUSIONS

Feedback delay interferes with
information-integration category learning,
but not with rule-based category learning.




EVIDENCE SUPPORTING COVIS

Single-cell recording studies

Asaad, Rainer, & Miller, 2000; Hoshi, Shima, & Tanji, 1998; Merchant,
Zainos, Hernadez, Salinas, & Romo, 1997; Romo, Merchant, Ruiz, Crespo,
& Zainos, 1995; White & Wise, 1999

Animal lesion experiments

Eacott & Gaffan, 1991; Gaffan & Eacott, 1995; Gaffan & Harrison, 1987;
McDonald & White, 1993, 1994; Packard, Hirsch, & White, 1989; Packard &
McGaugh, 1992; Roberts & Wallis, 2000

Neuropsychological patient studies

Ashby, Noble, Filoteo, Waldron, & Ell, 2003; Brown & Marsden, 1988; Cools
et al., 1984; Downes et al., 1989; Filoteo, Maddox, & Davis, 2001a, 2001b;
Filoteo, Maddox, Ing, Zizak, & Song, in press; Filoteo, Maddox, Salmon, &
Song, 2005; Janowsky, Shimamura, Kritchevsky, & Squire, 1989; Knowlton,
Mangels, & Squire, 1996; Leng & Parkin, 1988; Snowden et al., 2001




EVIDENCE SUPPORTING COVIS

Neuroimaging experiments

Konishi et al., 1999; Lombardi et al., 1999; Nomura et al., in press;
Poldrack, et al., 2001; Rao et al., 1997; Rogers, Andrews, Grasby, Brooks,
& Robbins, 2000; Seger & Cincotta, 2002; Volz et al., 1997

Traditional cognitive behavioral experiments

Ashby & Ell, 2002; Ashby, Ell, & Waldron, 2003; Ashby, Maddox, & Bohil,
2002; Ashby, Queller, & Berretty, 1999; Ashby, Waldron, Lee, & Berkman,
2001; Maddox, Ashby, & Bohil, 2003; Maddox, Ashby, Ing, & Pickering,
2004; Maddox, Bohil, & Ing, in press; Waldron & Ashby, 2001; Zeithamova
& Maddox, in press




AUTOMATICITY IN II-TYPE TASKS
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EARLY NOTIONS OF
AUTOMATICITY

"As [ write, my mind is not preoccupied with how
my fingers form the letters; my attention is fixed
simply on the thought the words express. But there

was a time when the formation of the letters, as each
one was written, would have occupied my whole
attention.”

Sir Charles Sherrington (1906)




EARLY NOTIONS OF
AUTOMATICITY

“It has been widely held that although memory traces
are at first formed in the cerebral cortex, they are finally

reduced or transferred by long practice to subcortical
levels” (p. 466)

Karl Lashley (1950) In search of the engram.

“Routine, automatic, or overlearned behavioral
sequences, however complex, do not engage the PFC

and may be entirely organized in subcortical structures”
(p. 323)

Joaquin Fuster (2001). The prefrontal cortex — an update.




A DOUBLE DISSOCIATION?

Category Categorization
Learning Expertise

Patients with Basal
Ganglia Dysfunction . : .
5 , 4 , Impaired Unimpaired
(Parkinson’s disease,

Huntington’s disease)

. ) : ’ . . f
Patients with certain Un1mp a}red 1
stimul1 are

visual cortex lesions : Impaired
percerved

- ifi '
(category-specific agnosia) normally?




Infermation-Integration Category Learning
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BUILDING A MODEL OF AUTOMATICITY
\Y[e]fe]}




BUILDING A MODEL OF AUTOMATICITY
\Y[e]fe]}




SPEED

Ashby, Ennis, & Spiering (2007, Psych Review)




—— Excitatory projection (glutamate)

S P E E D — — — . Inhibitory projection (GABA)

— Dopamine projection
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Ashby, Ennis, & Spiering (2007, Psych Review)



Activation in Striatum
(Medium Spiny Cells)

Izhikevich (2003, IEEE Trans. on Neural Networks)

Cv =KV -V, ,)V-V,)—U+]
U= a[b(V —Vrest )_ U]

Ifvzv,,thenresetvtov=c

andresetutou +d

50, v, = -80, v, =-25, a = .01,

C
b = -20, Vyeq = 40, ¢ = -55, d = 150

Increasing Input Amplitude (pA)
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Activation in Striatum
(Medium Spiny Cells)

Activation in striatal unit J at time t, denoted S,(t) equals

dS, (t) _ {

dt ZWK,J ()l (t)}[l -3, (t)]_ PsSy (D) =75 [SJ (t)- Sbase]+ os&(1)S, (t)[l -3, (t)],

K

where | (t) is the input from visual cortical unit K at time t,
and W, ;;(n) is the strength of the synapse between cortical

unit K and spine | on medium spiny cell J, and &(t) is white
noise.



Modeling Activation in Other Units

Globus Pallidus 4G, (®) =—a;S,(H)G, (1) - £;]G, () -G,... ]
T.(t
Thalamus: d CJI’[( ) =—o; G, (DT, () - AT, (1),
Premotor Area
dE, (t) _

s {aETJ )+ Viea (M (t)}[l =B (0]- BBy (0 7[Es (0~ By [+ 06 OE, 1 - By (0]



—— Excitatory projection (glutamate)

S P E E D — — — . Inhibitory projection (GABA)

Dopamine projection

Response

T Hebbian
learning

Sensory
Association

Stimulus
reinforcement

learning

" e o = W



Cortical-Cortical Learning (Hebbian)
Global Feedback Algorithm

presynaptic postsynaptic activation
I TP activation (above NMDA threshold)

~._\ /
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~ 1

LTD postsynaptic activation
(below NMDA threshold)



Cortical-Striatal Learning

(reinforcement learning - also a global learning algorithm)

LTP activation above dopamine above baseline
NMDA threshold (Correct Response)

R

+er, S5 )11y (0 = Ouuaon [ [D(M) = Dy T{[1 = Wi 5y ()]

B IBWSJ (t\__rK,iJ (t) B QNMDA :+ lDbase - D(n)r WK,iJ (n)

—1) w [HNMDA — i (t)]+ W' (n), \

dopamine below
/ baseline (error)

activation below

NMDA threshold activation above
NMDA threshold

LTD



Dopamine Release

Increases with:
Obtained Reward — Predicted Reward

where obtained reward on trial n equals

(+1 if correct feedback is received

R =4 0 if no feedback 1s received

—1  1f error feedback 1s received

.

n-1 _
and Predicted Reward on trialn =C» e”"™R
=1



Dopamine Release

Bayer & Glimcher (2005, Neuron) Dopamine Release in SPEED
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Dopamine

Dopamine Release
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Sensory
Association
Cortex

SPEED - Early Learning

Ap g(D)

Ll

Premotor Area
(Cortex)

i

Thalamus, .,

e "

Globus Pallidus

EA(t) A Stimulus

(%)

e

Striatum

D(n)

-
- -
-—--—____——--_



SPEED - After Over-Training
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II Learning With and Without Striatal Noise
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Percent Correct

Il Learning With and Without
NMDA Threshold
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Experimental Tests




Jactile Category Learning

Romo, Merchant et al.




Model Fits
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SPEED’s Single Cell Responses -Putamen
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SPEED’s Responses - Premotor Cortex

Low Speed Cells  High Speed Cells
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Ol Carelli, Wolske, &

SESSION (1997, J. of Neuroscience)
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DISCHARGES

SPEED’s Striatal Responses

Carelli et al. (1997, Journal of Neuroscience)
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proportion of trials missed C h Oi : Bal Sdlm )

0.6 -
dos | & Horvitz
,17_:': :: ot sor (2005, J. of Neuroscience)
1 o0.08 S§CH
§ 0.2 - m0.16 SCH
Em - Food pellet dropped
B X : - into compartment

injection day
Minimum 30 s

4500 - locomotor count between trials

i { 28 trials/day
i=m ] o 17 days
8 1500 | m0.16 SCH . .
" . Injected with

] dopamine (D1)

antagonist

injection day




SREED Fits to Choi et al. (2005) Data

Choi et al. (2005)
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Nosoefsky & Palmeri (1997, Psych Review)
Munsell Color Patches — 3 Subjects — 1800 Trials




SPEED Accuracy
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Mean Response Time

Nosofsky & Palmeri (1997)
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SPEED RT Density Functions

Density x 1000
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Future Directions

*fMRI

* Model automaticity development in:

-- neuropsychological populations

-- subjects under influence of drugs

e Automaticity in rule-based tasks




Conclusions

e Two category learning systems

e Explicit, logical reasoning system
- Uses working memory & executive attention

-- Frontal cortex

e Procedural learning system

-- Striatum

e [ earning systems train long-term cortical representations
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