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1) category learning
A) Experiments
B) TheoryB) Theory

2) categorization automaticity
A) C t ti l i  d lA) Computational neuroscience model
B) Tests of the model
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Effective learning requires:

• no distractions

• active and effortful processing of feedback

h d i i f f db k i i i lBut the nature and timing of feedback is not critical

(cluster learning is possible)
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Does this mammogram 
show a tumor?

i e is it in the categoryi.e., is it in the category 
“tumor” or the category 

“nontumor”?nontumor ?



Tumor!
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Effective learning requires:

• consistent feedback immediately after responsey p

• consistent mapping from category to response location

i f db k i• no active feedback processing

(no evidence that cluster learning is possible)



Rule Based Information Integration
Rule-Based                         Information-Integration
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Is the information-integration task inherently more difficult?



(Ashby, Alfonso-Reese, Turken, & Waldron, Psychological Review, 1998)

• explicit, logical-reasoning systemp g g y
-- quickly learns explicit rules

• procedural- or habit-learning system
-- slowly learns similarity-based rules

• simultaneously active in all tasks (at least initially)





Romo, Merchant et al.



Low Speed Cell High Speed Cell

Merchant et al. (1997, J. of Neurophysiology)



• logical reasoning system
  ki   d i  i• uses working memory and executive attention

• prefrontal cortex, anterior cingulate, head of the 
d t  l  th l ti l l  di l caudate nucleus, thalamo-cortical loops, medial 

temporal lobe structures      

• Working memory & attentional switching 
component FROST (Ashby  Ell  Valentin  & Casale  component – FROST (Ashby, Ell, Valentin, & Casale, 
2005, J. of Cognitive Neuroscience) 



ACC  =  Anterior Cingulate
PFC  =  Lateral Prefrontal Cortex
MDN  =   Medial Dorsal Nucleus of the Thalamus
GP  =  Globus Pallidus
CD = Head of the Caudate NucleusCD  =  Head of the Caudate Nucleus
VTA  =  Ventral Tegmental Area
SN  =  Substantia Nigra pars compacta
HC  =  Hippocampus

Excitatory projection

19

Excitatory projection
Inhibitory projection
Dopamine projection



The Striatal Pattern Classifier (Ashby & Waldron, 1999)
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• Information-integration category learning should• Information-integration category learning should
be sensitive to feedback delay

• Rule-based category learning should not be
iti  t  f db k d lsensitive to feedback delay



Maddox, Ashby, & Bohil (2003, JEP:LM&C)



Maddox, Ashby, & Bohil (2003, JEP:LM&C)



•  Results identical with 2.5 and 10 sec delaysy

• RB results replicated at 4 increased levels of RB results replicated at 4 increased levels of 
difficulty 

•  Replication with a rule-based task that uses 
a conjunction rule?a conjunction rule?



(Note: Rule-based discriminability higher)

Rule-Based Information-Integration
Dimensional-4 (Dim4) Non-Dimensional-4 (Non-Dim4)

on on

O
ri

en
ta

tio

O
ri

en
ta

tio

Frequency Frequency

Maddox & Ing (2005, JEP:LM&C)
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Maddox & Ing (2005, JEP:LM&C)



Feedback delay interferes with Feedback delay interferes with 
information-integration category learning, 
but not with rule-based category learningbut not with rule-based category learning.



Asaad, Rainer, & Miller, 2000; Hoshi, Shima, & Tanji, 1998; Merchant, 
Z i  H d  S li  & R  1997  R  M h t  R i  C  

Single-cell recording studies

Zainos, Hernadez, Salinas, & Romo, 1997; Romo, Merchant, Ruiz, Crespo, 
& Zainos, 1995; White & Wise, 1999

Animal lesion experimentsAnimal lesion experiments 
Eacott & Gaffan, 1991; Gaffan & Eacott, 1995; Gaffan & Harrison, 1987; 
McDonald & White, 1993, 1994; Packard, Hirsch, & White, 1989; Packard & 
McGaugh 1992; Roberts & Wallis 2000McGaugh, 1992; Roberts & Wallis, 2000

Neuropsychological patient studies
A hb N bl Fil t W ld & Ell 2003 B & M d 1988 C lAshby, Noble, Filoteo, Waldron, & Ell, 2003; Brown & Marsden, 1988; Cools 
et al., 1984; Downes et al., 1989; Filoteo, Maddox, & Davis, 2001a, 2001b; 
Filoteo, Maddox, Ing, Zizak, & Song, in press; Filoteo, Maddox, Salmon, & 
Song 2005; Janowsky Shimamura Kritchevsky & Squire 1989; KnowltonSong, 2005; Janowsky, Shimamura, Kritchevsky, & Squire, 1989; Knowlton, 
Mangels, & Squire, 1996; Leng & Parkin, 1988; Snowden et al., 2001



Konishi et al., 1999; Lombardi et al., 1999; Nomura et al., in press; 
P ld k  t l  2001  R t l  1997  R  A d  G b  B k  

Neuroimaging experiments 

Poldrack, et al., 2001; Rao et al., 1997; Rogers, Andrews, Grasby, Brooks, 
& Robbins, 2000; Seger & Cincotta, 2002; Volz et al., 1997 

Traditional cognitive behavioral experimentsTraditional cognitive behavioral experiments 
Ashby & Ell, 2002; Ashby, Ell, & Waldron, 2003; Ashby, Maddox, & Bohil, 
2002; Ashby, Queller, & Berretty, 1999; Ashby, Waldron, Lee, & Berkman, 
2001; Maddox Ashby & Bohil 2003; Maddox Ashby Ing & Pickering2001; Maddox, Ashby, & Bohil, 2003; Maddox, Ashby, Ing, & Pickering, 
2004; Maddox, Bohil, & Ing, in press; Waldron & Ashby, 2001; Zeithamova
& Maddox, in press 







"As I write, my mind is not preoccupied with how 
my fingers form the letters; my attention is fixed 
simply on the thought the words express. But there 
was a time when the formation of the letters, as each 
one was written  would have occupied my whole one was written, would have occupied my whole 
attention.”

Sir Charles Sherrington (1906)



“It has been widely held that although memory traces 
are at first formed in the cerebral cortex  they are finally are at first formed in the cerebral cortex, they are finally 
reduced or transferred by long practice to subcortical 
levels” (p. 466) 

Karl Lashley (1950) In search of the engram.

“Routine, automatic, or overlearned behavioral 
sequences  however complex  do not engage the PFC sequences, however complex, do not engage the PFC 
and may be entirely organized in subcortical structures” 
(p. 323) (p )

Joaquin Fuster (2001). The prefrontal cortex – an update.



Category Categorization
Learning Expertise

Patients with Basal 
Ganglia Dysfunction

(Parkinson’s disease, 
Impaired Unimpaired

Huntington’s disease)

P ti t ith t i Unimpaired if Patients with certain 
visual cortex lesions

(category specific agnosia)

p
stimuli are 
perceived Impaired

(category-specific agnosia) normally? 
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Ashby Ennis & Spiering (2007 Psych Review)Ashby, Ennis, & Spiering (2007, Psych Review)



Excitatory projection (glutamate)

Inhibitory projection (GABA)

Dopamine projectionDopamine projection

Ashby, Ennis, & Spiering (2007, Psych Review)



Izhikevich (2003, IEEE Trans. on Neural Networks)
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If v ≥ vpeak then reset v to v = cpeak
and reset u to u + d

C = 50, vrest = -80, vt = -25, a = .01,
b = -20, vpeak = 40, c = -55, d = 150
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Activation in striatal unit J at time t, denoted SJ(t) equals
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where IK(t) is the input from visual cortical unit K at time t, 
and wK,iJ(n) is the strength of the synapse between cortical 

i K d i di i ll J d ( ) i hiunit K and spine i on medium spiny cell J, and ε(t) is white 
noise. 
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Excitatory projection (glutamate)

Inhibitory projection (GABA)

Dopamine projectionDopamine projection

Hebbian 
learning

reinforcement

learning

reinforcement 
learning



vK,J(n) = strength of synapse between visual cortical cell K and premotor cell J on trial n

presynaptic postsynaptic activation

Global Feedback Algorithm

LTP
presynaptic 
activation

postsynaptic activation 
(above NMDA threshold)

[ ] [ ])(1)()()()1( ,,, nvtEtInvnv JKNMDAJkvJKJK −−+=+ +θα

[ ] )()()( , tvtEtI JKJNMDAkv
+−− θβ

LTD postsynaptic activation p y p
(below NMDA threshold)



CorticalCortical--StriatalStriatal Learning Learning (3 factor)(3 factor)
(reinforcement learning (reinforcement learning –– also a global learning algorithm)also a global learning algorithm)

LTP activation above 
NMDA threshold

dopamine above baseline 
(Correct Response)

(reinforcement learning (reinforcement learning also a global learning algorithm)also a global learning algorithm)
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Obtained Reward Predicted Reward
Increases with:

Obtained Reward – Predicted Reward
where obtained reward on trial n equals
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Bayer & Glimcher (2005 Neuron) Dopamine Release in SPEEDBayer & Glimcher (2005, Neuron) Dopamine Release in SPEED

Obtained Reward – Predicted RewardObtained Reward Predicted Reward
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Romo, Merchant et al.
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Low Speed Cell High Speed Cell

Merchant et al. (1997)



Low Speed Cells High Speed Cells

Romo et al., 1997



(1997 J of Neuroscience)(1997 J of Neuroscience)(1997, J. of Neuroscience)(1997, J. of Neuroscience)

Lever press to tone 

70 trials/day

18 days18 days

Striatal Response



Carelli et al. (1997, Journal of Neuroscience)

Carelli et al.



(i.e., RT > 10 s)

F d ll t d d

(2005, J. of Neuroscience)(2005, J. of Neuroscience)

Food pellet dropped 
into compartment

Minimum 30 s 
between trials

28 trials/day

17 days17 days

Injected with 
dopamine (D1) 

antagonist





Munsell Color Patches – 3 Subjects – 1800 Trials
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Model Performance
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SPEEDNosofsky & Palmeri (1997)
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•fMRI

• Model automaticity development in:

-- neuropsychological populations 

bj t d i fl f d-- subjects under influence of drugs 

•Automaticity in rule-based tasks•Automaticity in rule-based tasks



• Two category learning systems

• Explicit, logical reasoning system
-- Uses working memory & executive attention
-- Frontal cortex

• Procedural learning system• Procedural learning system
-- Striatum

• Learning systems train long-term cortical representations
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